Target-derived BMP signaling limits sensory neuron number and the extent of peripheral innervation in vivo.
نویسندگان
چکیده
The role of target-derived BMP signaling in development of sensory ganglia and the sensory innervation of the skin was examined in transgenic animals that overexpress either the BMP inhibitor noggin or BMP4 under the control of a keratin 14 (K14) promoter. Overexpression of noggin resulted in a significant increase in the number of neurons in the trigeminal and dorsal root ganglia. Conversely, overexpression of BMP4 resulted in a significant decrease in the number of dorsal root ganglion neurons. There was no significant change in proliferation of trigeminal ganglion neurons in the noggin transgenic animals, and neuron numbers did not undergo the normal developmental decrease between E12.5 and the adult, suggesting that programmed cell death was decreased in these animals. The increase in neuron numbers in the K14-noggin animals was followed by an extraordinary increase in the density of innervation in the skin and a marked change in the pattern of innervation by different types of fibers. Conversely, the density of innervation of the skin was decreased in the BMP4 overexpressing animals. Further Merkel cells and their innervation were increased in the K14-noggin mice and decreased in the K14-BMP4 mice. The changes in neuron numbers and the density of innervation were not accompanied by a change in the levels of neurotrophins in the skin. These findings indicate that the normal developmental decrease in neuron numbers in sensory ganglia depends upon BMP signaling, and that BMPs may limit both the final neuron number in sensory ganglia as well as the extent of innervation of targets. Coupled with prior observations, this suggests that BMP signaling may regulate the acquisition of dependence of neurons on neurotrophins for survival, as well as their dependence on target-derived neurotrophins for determining the density of innervation of the target.
منابع مشابه
Serum Response Factor Mediates NGF-Dependent Target Innervation by Embryonic DRG Sensory Neurons
Serum response factor (SRF) is a prototypic transcription factor that mediates stimulus-dependent gene expression. Here, we show that SRF mediates NGF signaling, axonal growth, branching, and target innervation by embryonic DRG sensory neurons. Conditional deletion of the murine SRF gene in DRGs results in no deficits in neuronal viability or differentiation but causes defects in extension and ...
متن کاملDevelopment of Sensory Neurons in the Absence of NGF/TrkA Signaling In Vivo
The neurotrophin survival dependence of peripheral neurons in vitro is regulated by the proapoptotic BCL-2 homolog BAX. To study peripheral neuron development in the absence of neurotrophin signaling, we have generated mice that are double null for BAX and nerve growth factor (NGF), and BAX and the NGF receptor TrkA. All dorsal root ganglion (DRG) neurons that normally die in the absence of NGF...
متن کاملOverexpression of brain-derived neurotrophic factor enhances sensory innervation and selectively increases neuron number.
Target-derived neurotrophin growth factors have significant effects on the development and maintenance of the mammalian somatosensory system. Studies of transgenic mice that overexpress neurotrophins NGF and neurotrophin 3 (NT-3) at high levels in skin have shown increased sensory neuron number and enhanced innervation of specific sensory ending types. The effects of two other members of this f...
متن کاملDistinct requirements for TrkB and TrkC signaling in target innervation by sensory neurons.
Signaling by brain-derived neurotrophic factor (BDNF) via the TrkB receptor, or by neurotrophin-3 (NT3) through the TrkC receptor support distinct populations of sensory neurons. The intracellular signaling pathways activated by Trk (tyrosine kinase) receptors, which in vivo promote neuronal survival and target innervation, are not well understood. Using mice with TrkB or TrkC receptors lacking...
متن کاملNogo receptor homolog NgR2 expressed in sensory DRG neurons controls epidermal innervation by interaction with Versican.
Primary sensory afferents of the dorsal root ganglion (DRG) that innervate the skin detect a wide range of stimuli, such as touch, temperature, pain, and itch. Different functional classes of nociceptors project their axons to distinct target zones within the developing skin, but the molecular mechanisms that regulate target innervation are less clear. Here we report that the Nogo66 receptor ho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 131 5 شماره
صفحات -
تاریخ انتشار 2004